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ABSTRACT

Calculations have been made of high-resolution atmospheric slant path
transmission in the 15u COp band, by direct integration across the band.
Mixed Doppler-Lorentz broadening has been used at pressures lower than 100mb
and a method to eliminate the Curtis-Godson approximation has been developed
and applied. Comparison with band model calculations show large discrepancies.
Some applications are discussed, together with an outline of future work.
FORTRAN programs and transmission tables are presented in the appendices.

ix



1. INTRODUCTION

In recent years there has been a growing interest in atmospheric in-
frared radiative transfer, with applications to the earth and other planets.
On the earth these applications include the investigation of radiative heat-
ing and cooling, and the interpretation of satellite instrument measure-
ments, while the composition, surface pressure, temperature etc., of planetary
atmospheres may be found from suitable remote radiometric observations. At
the same time there have been increasing demands on the accuracy of calcula-
tions; broad band radiometers are being supplemented and replaced by instru-
ments of much higher spectral resolution and photometric accuracy.

One of the chief problems stems from the difficulty in calculating at-
mospheric transmission funetions due to molecular band absorption. These
functions are generally obtained in one of two ways:

a. From laboratory absorption cell measurements. These are subject
to experimental errors, which, in the case of low concentrations of
the absorbing gas, may be severe. Considerable extrapolation over
temperature, pressure, and path length is required before applica-
tion to atmospheric conditions can be made. In addition, such trans-
mission functions have an instrument response function built in, and
the spectral resolution is limited by the measuring instrument.

b. By theoretical.calculations using band models. These are generally
uwnsatisfactory, for reasons which are discussed in detaill in a later
section. They cannot be applied to certain sections of the absorp-
tion bands, which are of extreme importance in the upper atmosphere.

The procedure adopted here was to integrate directly across the band,
using theoretically calculated line positions and strengths. The accuracy
of the transmission function is governed by our knowledge of the absorption
band structure. The 15u COs band was chosen because the line position and
strengths are known fairly accurately, whereas those of the rotational water
vapor band, ozone etc., are less well known. However, it should be emphasised
that the method is quite general and can be applied to any absorbing gas.



2. LINE SHAPES

The question of line shapes is extremely important in the calculation
of atmospheric absorption and must be adequately known before calculations
are made., The theory governing the shapes and half-widths is difficult to
apply; furthermore experimental work is hampered by such factors as the
overlapping of lines, the difficulty in obtaining suitable high-resolution
instruments and the effect of instrument aperture functions on the spectra.
However, there is good evidence to support the use of the Lorentz line shape
where pressure broadening is the dominant feature and the mixed Doppler-
Iorentz line shape at lower pressures.

2.1 THE LORENTZ LINE SHAPE

This has a very simple form and has the great advantage that it is
easy to deal with analytically. The absorption coefficient at frequency,
v, for a single line strength, S, centered at frequency, Vo, is given by

S CtL
k. = - \ l
v ¢ (V‘VO)Z'QIF (1)

where o1, is the lLorentz half-width at temperature T, and.pressure p. The
dependence of Qg upon these parameters is given by

T
aL = aoi EQ‘ (2)

o being the half-width at temperature Ty, and pressure p,e.

There are references in the literature to deviations from the ILorentz
line shape in the far wings of COz lines. In a recently published article
Winters et al., have given details of experimental measurements on the h.3u
COz band. Their results show that beyond about 5 cm~! from the line center,
the absorption coefficient drops away much more sharply with frequency than
is predicted by Eq. (1), and an empirical modification, which is almost ex-
ponential, is given. However, it should be noted that these experimental
results were obtained for Np-COz and Op-COz mixtures in which the proportion
of COz was very high compared with the concentration in the earth's atmos-
phere. Moreover, the empirical modification was dependent on these concen-
trations. It was decided that there was no justification in altering the



line shape until experimental data are available for lower concentrations.
For other planetary atmospheres, where the COz concentration is much greater,
the question must be reexamined. Much more important is the uncertainty in
half-width. In the present calculation all lines were assumed to have a
half-width of 0.064 cm™ at 298°K and a pressure of 1 atm (Kaplan and Eggers )
It is known that there are important variations in half-width from line to
line (Madden5), but not enough is known to be taken into account in the pres-
ent calculations. It is an area where a detalled theoretical and experimen-
tal investigation could be very useful.

In calculating the transmissivity due to a single line in a thin atmos-
pheric slab, where the temperature variation is so small that it may be con-
sidered isothermal, Young' has shown that the Curtis-Godson approximation is
capable of a simple interpretation: for an absorbing gas with a constant
mixing ratio the value of k, is calculated by substituting the average pres-
sure for the layer. It will be shown that the Curtis-Godson approximation
may be entirely eliminated by integrating the line shape with respect to
pressure .

Consider a plane parallel atmospheric slab bound by pressure levels
p1 and pe. The transmissivity of a path through this slab is given by

8=
7, = €Xp -f k, du P2 > P2
P1

where u 1is the optical mass at pressure p.

Since the mixing ratio is constant

du = c dp
where ¢ is constant.
Thus
&=
7Yy, = exp|- cf kv dp (5)
P

Equation (3) is valid for any line shape. For certain special cases the in-
tegral may be evaluated analytically. In the isothermal slab Eq. (2) shows



that or, depends directly on pressure, Oy, = 01 p say. Equation (3) becomes

cS pa o1 p dp
exp (- 2, 272
T (v-vg)=+a1"p

/
cS 012p22H v-v5)2
ex - In L
p <\\2ﬂal [;12p12+(v-v0)2 (&)

A
<
I

cf. Goody? page 233.

The corresponding value using the Curtis-Godson approximation is

_ _ cSaa _p2Z-p)°®
Yy = exp o (v-vo)2+a12((p1+p2)/2)2:> (5)

It is interesting to compare the two results. At the line center (v = vo),
the latter gives

2c¢S P=2-Pa1
Tvy = €XP |- Lo 2+p1:> (6)
whereas Eq. (L) yields
¢S, P2
Tvg = €XP - por 0T (7)

For thin slabs (i.e., where the value of pz/pl is near unity) the approxima-
tion is fairly good, but not for thicker slabs. If ps = 2p1 the Curtis-God-
son approximation gives

and the pressure integrated value is

cS
Yvg = exp| - ;a: In

o 1 —n




while for pz = 9 py the values are

cS
Tvg = ©XP <E l.6;a:

7y = exp <E:ln 9 E%E), respectively
o] ji(e4]

Further out in the wings the difference again becomes less. As (v—vo)
becomes large, we can expand Eq. (1)

and

2 4
cS oy 2 2 a1 (ot 4 + hi
= ex - - - — 5 = higher order terms
Yy - R — { (v )® (pz2 -p1 ) (v-va)% p2 -P1 )

(8)

and Eq. (5) becomes

2 2 _ 2 4 2 2 2
y, = exp |- S Jay~(p2 b ) .9 — (p2°-pa®)(pa+p2)” higher order terms
v 210 (v-vg) (v-vp)* I
(9)

The first terms in the expansions are equivalent, while the difference in
the second terms is

As v-v, becomes large this term becomes small, so that the Curtis-Godson
approximation becomes good.

At the line center the exact pressure integration gives more absorption
but away from the center the absorption due to the Curtis-Godson approxima-
tion is always greater. To compare the total absorption for a single iso-
lated line the equivalent width, A, was calculated for a number of different
values of pi1 and po-.

A is given by



A = f (1-7,) av (10)

o}

and by substitution of Egs. (4) and (5) the equivalent width for the pres-
sure integration, Apr, and Curtis-Godson approximation Agg may be calculated.
A slight modification was made by substituting

u = C(Pa-Pl)

and calculating the equivalent widths for different values of Su from 10.0
to 1.0 x 107%m™L,

The numerical evaluation of Apy was accomplished by Gaussian quadrature
over a fine mesh of subintervals, whose length depended on the distance from
the line center. Apg was determined from the Landenberg-Reiche formula.

To check the accuracy of the quadrature technique, Apg was also calculated
numerically and the length of the subintervals adjusted until close agree-
ment was obtained with the Landenberg-Reiche method.

The results agree with those obtained by Kaplan, but have been extended
to include paths between arbitrary pressure levels, using numerical integra-
tion techniques. The value of Agg 1s always greater than Apr but the dif-
ference becomes small for very large and very small values of Su and for
values of pg/pl near unity.

Figure 1 shows the maximum error in using the Curtis-Godson approxima-
tion between pressure levels of p mb and 1000 mb. For p < 350 mb the maximum
error is greater than 1%. Even for p = 800 mb (800 and 1000 mb were actually
used as pressure limits of one slab in the final calculations) the error is
as high as 0.05%, which is outside the limits of accuracy required. The
maximum occurs for Su = 0.6 em™L. For a vertical path in the earth's atmos-
phere between 800 and 1000 mb,u < 50 atm cm, giving the maximum error for
S = 0.012 (atm cm)"l cm'l, a line of medium strength, important for radiative
transfer in regions of the band away from the center.

Figure 2 shows a typical distribution of error with values of Su, in
this case for paths between 10 and 100 mb. The error is greater than half
a percent for values of Su ranging over more than two orders of magnitude.

Reasons for the success of the approximation in dealing with the Lorentz
line shape are:

a. In many cases the center of the line is completely blacked out.

b. For a weak line the absorption is almost independent of the line

R
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shape—it depends only on the line strength and the optical mass
of the path.

For intermediate cases, where strong absorption takes place near the
center of the line, but complete absorption is not present, the pressure
integration method supplies a much higher degree of precision. Because
the present calculations were made with a high degree of accuracy, the
Curtis-Godson approximation was excluded in favor of the pressure integra-
tion method.

2.2 MIXED LINE SHATE

As the atmospheric pressure decreases the Lorentz half-width becomes
less and the influence cf Doppler broadening becomes more marked. For the
15 COz2 band the Doppler and Lorentz half-widths are equal at about 10 mb
and at lower pressure the Doppler half-width is the greater. Thus, over a
wide range of atmospheric pressures it is necessary to consider the mixed
Doppler-lorentz line shape.

4,6

The absorption coefficient for mixed broadening is given by

K.y o] -t2
e
k = 0= dt 11
v el f yEH(x-t)2 (11)

where

(o)
S (in 2 l/—
K O - OtD T

QL 1/2
ap (fn 2)

(v=vg) (ta 2)l/2
)

The Doppler half-width, Op, depends linearly on frequency and linearly
on the square root of the absolute temperature, T.

T 1/2
ap = 3.58 x 10'7<M—> Vg

M = molecular weight



The Doppler absorption coefficient is given by

= 2
k, = kj exp(-x®) (12)
As the pressure becomes small, Qp, tends to zero and Eq. (ll) reduces
to the Doppler case. Similarly, for large pressures aL/aD becomes large
and in the limit becomes Eg. (1).

The integral (11) cannot be evaluated analytically and numerical method
must be used. Although there is no difficulty in obtaining as accurate a
value as desired, it is not an easy task to find an efficient way to cal-
culate its value, bearing in mind that this may have to be done many times
for different values of x and y in the course of a single computer program.
Young has summarized the methods available and has now improved his tech-
nique, resulting in an efficient subroutine (KNUMIX) over wide ranges of
values of x and y which are encountered in the earth's atmosphere.

Because of the analytical difficulties involved, it has generally been
assumed in the past that Doppler effects may be neglected in terrestial
radiative transfer calculations. Plass and Fivel~ showed that for very weak
or very strong lines its influence was negligible up to altitudes of at least
50 km, but were not able to reach any conclusion for lines of intermediate
strength. Accordingly, an investigation was conducted to determine the
values of pressure over which it is necessary to use the mixed line shape.
In this analysis homogeneous paths of constant temperature and pressure
were chosen. The equivalent width, A, of a line of strength S, and path of
optical mass u, was computed for a number of different pressures p, using
both the Lorentz and mixed line shapes. In addition, the strong and weak
line approximation were evaluated and compared with the equivalent widths.

The result for p = 0.5 mb is illustrated in Fig. 3. In general it
agrees with Plass and Fivel,“ namely, that for very strong lines the strong
line approximation, Ag, lLorentz equivalent width, Ay, and mixed equivalent
width, Ay, are coincident, and that for very weak lines the weak-line ap-
proximation, Ay, is equal to Ay, and AM. Between these two extremes the be-
havior is quite interesting.

Firstly, Ay is an upper bound for both the mixed and Lorentz equivalent
width. In fact, it is easy to show that this result is true for an arbitrary
line shape. Since

k,u >0 for all v and u

1. e ck

Therefore
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Fig. 3. Equivalent widths for homogeneous paths at 0.5 mb pressure, 250°K,
and frequency 700 em=L.




A = f (l-e_kvu)dv <Jxkxudv = Su = Ay

i.e., A<Aw

Secondly, Ag is an upper bound for Ay, but not for AM. For intermediate
values of Su the value of Ay is almost three times the values of Ap and Ag.
As Su increases AM approaches Ag from above, while Ar, approaches Ag from be-

low.

At higher pressures these characteristics are maintained, although the
differences decrease in magnitude. Above 20 mb, however, the strong-line
approximation is an upper bound for both the mixed and lLorentz absorption.

To minimize computation time, it is important to know the pressures
where pure Lorentz broadening may be used and where it is necessary to use
the mixed Doppler-Lorentz. The maximum errors (over all Su) of the equivalent
widths for a number of pressures have been plotted in Fig. 4. They vary from
60% to 0.5 mb to 0.05% at 100 mb. The criterion adopted was to use pure
Lorentz broadening above 100 mb and mixed Doppler-Lorentz at lower pressures.

It is possible to apply the Curtis-Godson approximation to the mixed
line shape as well as pure pressure broadening. It will be shown that it
can be eliminated in the same way, although the analysis i1s necessarily more

complicated.

Equation (3) is again the appropriate one to use and this necessitates
the evaluation of the integral:

ba b2 ko v o e'tz
k,dp = Q f at a 1
JF v P Jf 7 J, vEHx-t)® P (13)

D1 P

There are two obvious approaches to its evaluation.

a. Evaulation of Eq. (6) using the subroutine KNUMIX, and applying
Gaussian quadrature to the pressure integral.

b. The order of integration may be reversed:

2

© o -t
7, = exp -f Shoy £~ b g (1b)
v Lo by By y2+(x-%)

12
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Fig. 4. Maximum error in equivalent widths using Lorentz broadening at low
pressures.
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Again the assumption is made of an isothermal slab. y is the only pressure
dependent term and may be written in the form

y = Jo P

Substituting

o P2 -2
7, = exp Jf Ckoyo = B2 gt
v Yo P +(x-t)

=00 pl

)

///_EQ_ <302P22+(X t) ;E) (15)

exp
\_ 2ryo J, o p1H(x-t)Z

This integral shares many of the characteristics of Eq. (11). The
integrand has a sharp maximum at t = x and any method of numerical integra-
tion must be capable of reproducing the effect of the peak in the neighbor-
hood of t = x. Hermite-Gauss quadrature is the obvious method, but for
values where ‘v—vol < .003 em™L and p < 10 mb, the integral does not con-
verge as the number of points of quadrature approaches 20. It was found
that two methods could be employed in this region.

Firstly, the interval (-o,o) was divided into subintervals whose
length was dependent on the distance from t = x. By taking small intervals
around this point and successively larger ones as the distance increased,
the integral could be successfully evaluated by Gaussian guadrature. With
the subdivisions used, the sixth significant figure was always the same for
10- and 16-point guadrature, over a wide range of x and p. Those regions of
overlap with the 20-point Gauss-Hermite quadrature showed agreement between
the two methods, with the discrepancy in the sixth significant figure never
exceeding one. Whereas the Gauss-Hermite quadrature is fast and efficient,
the method of subdivision is slow and tedious. A quicker solution was

sought.

As an efficient method of evaluating Eq. (11) was already available
(subroutine KNUMIX), Gaussian gquadrature of the mixed line shape integral
with respect to pressure was investigated. Two-point Gaussian quadrature
was found to give a high degree of accuracy, almost as good as the sub-
division technique, with a much smaller execution time.

For Iv-vol > 0.2 em™t or p > 100 mb pressure broadening was found to
be sufficiently accurate and much faster.



To summarize, three different methods were employed to evaluate the

appropriate pressure integrated line shape.

PRESSURE (MB.)

They are illustrated in Fig. 5.
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Fig. 5. Regions of validity of line shape integration methods.

Region I. 2-point Gaussian quadrature of the mixed line shape integral.
Region II. 20-point Gauss-Hermite quadrature of Eq. (15).

Region III. Pressure broadening only, using Eq. (h).

N

Work continues to find better methods of particularly in Region I where

execution time is greatest.
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3, BAND MODELS

Because of the great complexity of molecular absorption bands it has
become a widespread practice to calculate atmospheric absorption with the
help of band models. They assume that the line positions and strengths are
distributed in a way that gives a simple solution for the transmission func-
tion, averaged over some interval. The most commonly used band models are:

a. The Elsasser or regular model6’9 assumes spectral lines of equal
intensity, equally spaced and with identical half-widths. The
transmission function is averaged over an interval equal to the
spacing between the line centers.

b. In the statistical or random model,6’lo originally developed for
water vapor, the positions and strength of the lines are given by a
probability function.

¢. The random-Elsasser model6 which assumes a random superposition

of different elasser bands.

d. The quasi-random model.ll This is by far the best available model
and is capable of fairly accurate representation of the band pro-
vided the averaging interval is made sufficiently small.

There are fundamental objections to the use of band models in accurate
transmission calculations.

a. The spectral resolution with which the calculations can be made is
limited in most models, e.g., for the Elsasser model it is a mul-
tiple of the line spacing. Where the resolution is not limited
(qu., quasi—random) the amount of calculation required for high
resolution is large.

b. The solutions lose their simple form when mixed broadening is in-
troduced in place of the less complicated pressure broadening.

c¢. By their very nature the models are such that they can only sim-
ulate the actual line intensities and distributions. For instance,
a cursory glance at the 15p COz band will show that neither the
random nor the regular band adequately describes the situation.
This is particularly true for regions such as the main Q-branch at
667 .4 cm'l, where the distribution is definitely not random or
regular. This Q-branch is very important for radiative transfer,
particularly in the upper atmosphere.

|



d. It is difficult—if not impossible—to avoid the use of the Curtis-
Godson approximation.

The quasi-random model has done much to remove the objections above; in
fact; as the width, &, of the averaging intervals tends to zero, the model
distribution apprecaches the actual distribution. However, if ® is small the
advantage of using the model disappears and the calculations become increas-
ingly lengthy. In extensive computations of COz transmission, Stull et al.,12
have used 5 em=l for the value of d, but this is too large in some of the
regions of greatest interest. In the interval entered at 665 cm™r, for ex-
ample, nearly all the very strong lines are concentrated at one end of the
interval, between 667.4t and 667.5 cm™L. Yet the model assumes them to be
randomly distributed throughout the interval; seriously overestimating the
absorption.

With increasingly sophisticated instruments coming into general use,
it has become apparent that a more accurate approach must be made. At the
time when band models were introduced it was impossible to make complicated
calculations and hence the grocwth in pocpularity of the mcdels. In recent
years, with the advent of high-speed digital computers with large storage
capacities, the situation has changed radically. With a suitably efficient
program it is now possible to make transmission calculations by integrating
directly with respect to frequency. Accordingly, calculations have been made
without the use of a band model; they cover the entire 15p COz band, from
500 to 859 cm“l, and are averaged over 0.1 em-l intervals. This high resolu-
tion has the additional advantage that the traasmission function may be
averaged over larger intervals, taking into account instrument response
functions. An example of such an application is given in a later section.

The calculations were made of the transmission from a point outside
the earth's atmosphere down to a total of 34 pressure levels, ranging from
0.3 mb tc 101%.25 mb. Slant paths for six zenith angles were used, O, 15,
30, L5, 60, and 75 degrees. The atmosphere was assumed to be plane parallel,
with a constant mixing ratio of 0.0314% by volume of COz. The atmosgheric
temperature structure used was the U. S. Standard Atmosphere, 1962. Test
calculations were made for differing temperature structures and their effect
cn the transmissivity will be discussed in a later section of this report.

17



L. CALCULATION DETAILS

The position and strength of some 2000 lines in the 15u COs band have
been listed by Young,lL at six temperatures between 175° and 300°K. Dr.
Young kindly provided a duplicate card deck.

This deck was modified in two ways:

a. Where two or more lines had a coincident frequency, they were
replaced by a single line whose intensity was the sum of the
separate intensities.

b. It was found from test calculations that only those lines whose
intensities were greater than 1.0 x 1074 em-1 (atm em)~t at 275°K
had any marked influence outside the 0.1 em~l interval within which
they were contained. Therefore the deck was split into two parts,
containing 982 strong lines and 1008 weak lines, respectively.
These strong and weak lines were treated in rather different ways
by the main program.

4.1 STRONG LINES

Beyond 0.2 em™l from the line center the pressure broadening completely
dominates the line shape, for all atmospheric temperatures and pressures,
and hence the absorption coefficient, k,, for a line of strength, S, may be
written

- 5_ 9%
Ky = n (Av)Zr? (16)

2
0

Whenever <—A—L> < 1 this may be expanded as
v

2
k = §--91L§- 1 ~gL—— + higher order terms
v x (Av) (av)= &

Now

op, < .07 em™

so that the error in neglecting the term (aLQ/sz) is less than 1 part in
lO'h, provided that fAvl > 7.0 em™t (for most values of pressure the error

18



is much less than 1 part in 10-%). Hence for
|av] > 7.0 em™t

the approximation

g o
k., = =L 1
v n AVZ ( 7)
was used.
For each 1 em™! interval the sum
. Y Si
SM(T3,vo) = ] (18)
(Vj_"'vo)

was calculated. The sum was taken over all strong lines at a distance
greater than 7.5 em™L from the center of the interval, and was computed for
three values of v, the center and the two end points of the interval, as
well as for six temperatures; Tj, 175° to 300°K in 25°K steps. In order to
find the value of SM(T,V) three-point Lagrange interpolation over both
temperature and frequency was employed.

The approximation (17) can be used for many values of |av| < 7 em~L.
If IAv} < .009 p, where p is the pressure in mb;, Av in cm‘l, the error in
using (17) is less than 1 part in 5 x 1072 and this inequality was adopted
as a criterion for the use of approximation (17). In addition, if the mag-
nitude of the expression S/(Av)2 was sufficiently small (< 0.001) the Eq.
(17) was employed.

It should be emphasized that these approximations are an essential part
of the calculations. Without them the expression in Eq. (M)y involving a
natural logarithm, would have to be evaluated for each strong line at each
pressure level and each frequency, Vv, a procedure which would be prohibitively
time consuming. The approximations were checked both theoretically and in
actual calculations over small test portions of the band, with satisfactory
results in all cases.

Where the use of Eq. (4) could not be avoided it was found that the
logarithm could be written in the form

In(1l+x) x>0

where, in the majority of cases; X was small. For x < 0.2, a simple ex-
pansion was used to evaluabte the logarithm, it being both quicker and
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frequently more accurate than the library subroutine. For x > 0.2 the
library subroutine was used. This applies to all places in the program
where the function Zn(l+x) had to be evaluated, for example the evaluation
of Eq. (15) for the mixed line shape.

Integration with respect to frequency was performed as follows: as
previously mentioned, the transmission was averaged over 0.1 em=1 intervals.
If a strong line lay within the interval an especially fine subdivision for
quadrature had to be developed up to a distance of 0.01 em™1 from the line
center: L-point Gaussian quadrature was applied over the intervals formed
by points distance 0.0, 0.001, 0.002, 0.003, 0.005, and 0.01 em™L from the
line center. Four-point Gaussian quadrature was also applied to the remain-
ing subintervals, subject to this modification: where a subinterval had
length greater than 0.03 em™! and was situated nearer than 0.1 cm™L from a
line of strength greater than 0.1 (atm cm)-l cm'l, the subinterval was
further subdivided into three smaller subintervals.

For a given frequency, v, determined by the Gaussian quadrature abscissae,
the value of the expression

Y. = exp-f—k/ﬁpl k., du (19)

was calculated for each of the pressure levels, Py i=l...34%, and for six
slant paths. The integral was expressed in the form

i

Dy Pj
k, du = k, du (20)

© J=1 Pj_1

Py

The pressure slab between pressures p; and pi+] was considered iso-
thermal, with the temperature the average of the values at the top and
bottom. Since the difference was never more than a few degrees, little
error results in this assumption.

The transmission function was determined by multiplying the wvalues of

7v by the appropriate quadrature weights and interval lengths.

4.2 WEAK LINES

The average transmission over the 0.1 cm"l interval due to the weak
lines was calculated separately, using a quadrature technique similar to
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that employed for the strong lines. Finally this transmission was multiplied
by the transmission from the strong lines to obtain the correct value of the
transmissivity in the 0.1 em™L interval.

4.3 THE PROGRAMS

Most of the preliminary work, testing approximations and producing a
rough draft of the final programs, was done at The University of Michigan
Computing Center, using the IBM 7090 computer. MAD language was employed
because, while it produces a slightly less efficient object program, it com-
plies much more quickly and has a greater flexability than FORTRAN. The
rough MAD programs were then translated into FORTRAN II, and largely de-
bugged at The University of Michigan.

A block of free computer time was very kindly made available at the
National Center for Atmospheric Research Computer Facility, in Boulder,
Colorado, on the CDC 3600. Only slight modifications were needed to the
FORTRAN II programs to convert them to CDC 3600 FORTRAN. These CDC pro-
grams appear in Appendix A. For comparison purposes the CDC 3600 is roughly
twice as fast as the IBM 7090.

Because of the large number of storage locations needed in the cal-
culations, the program was written in two parts.
4.3.1 Program SUBPROG

Together with its subroutine GRONK, this program determined:

a. The number and position of the weak and strong lines within each
0.1 em~t interval.

b. Produced a code giving information when the strong and weak lines
were the end points of an interval.

c. Gave the subintervals over which Gaussian quadrature was applied.

d. Formed the sum (18) for the temperature and frequencies required.

e. Gave a number of other details concerning the input of strong- and
weak-line strengths and positions. These results were written on
binary tape (tape 20) and were used as input by program MAIN.

SUBPROG was somewhat complicated because of the many special cases that

had to be tested for in the course of execution. However, since it is largely

integer arithmetic, it was very fast in execution. The time taken for the
entire band was approximately 5.3 minutes on the CDC 3600.
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4.3.2 Program MAIN

Together with its three subroutines, LOOKAT, CENTRE, and KNUMIX, Pro-
gram MAIN computed the transmission. Initially MAIN set up various con-
stants and also arrays which were dependent on the pressure levels. BSec-

uz

ondly, it calculatedb/\ k, du for an isolated line at various distances

ui
Av from the line center, for values of uj, uz corresponding to the pressure
levels. Since the integral involves the mixed line shafe, which varies
slowly with frequency, it was recalculated every 10 cm” In addition strong
and weak lines were read in (from the binary tape) during this second section
of the program.

Thirdly, the actual transmission calculations were performed, in three
stages:

a. Transmission was calculated for the intervals between the strong
lines, using subroutine LOOKAT.

b. Transmission was calculatedin the neighborhood of the strong lines
involving subroutines CENTRE and LOOKAT.

¢. Modification due to weak lines was made using subroutine CENTRE .

The transmission functions were written on magnetic tape in BCD mode.
The total execution time for the whole band (499.5-859.5 cm-1) was 109.k4
minutes on the CDC 3600.

A CDC 3600 FORTRAN listing for both programs and their subroutines is
found in Appendix A. In order to reduce execution time all two-dimensional
arrays were written with linear subscripts, except in some I/0 statements
where it was difficult and inconvenient not to use two subscripts.

The subroutine KNUMIX which evaluated the mixed line shape integral
(Eq. (13)) was written in MAD by Dr. Charles Young. The version of KNUMIX
listed here is a translation into FORTRAN.

Badifhes..



5. DISCUSSION OF THE RESULTS

5.1 GENERAL

Because of the large amount of data obtained it is impossible to re-
produce more than a small fraction in this report. The emphasis has been
placed on supplying coefficients that may be useful in atmospheric radiation
calculations, and in comparison with previously published results. In addi-
tion, an example of an application to an instrument function is presented.
The complete results are available on magnetic tapes.

In keeping with the first aim, the transmission coefficients have been
averaged over 5 cm~L intervals, for the vertical path only, with entries
every 1 cm'l (Appendix B). The frequency at the top of each column is that
of the center of the 5 em™L interval. No attempt has been made to smooth
the data, as may be seen from Fig. 6, which is a plot of transmission versus
frequency for four of the pressure levels.

The main Q-branch (667.k cm'l) dominates the absorption at low pres-
sures. 1t is composed of a large number of strong lines, neither regularly
nor randemly distributed, which cannot be adequately represented by a band
model. Accordingly, more detailed results are given in this region: Appendix
C contains tables of transmission coefficients at 0.1 em™L resolution between
665.5 and 670.5 em-l, for the vertical path. Figure 7 illustrates some of
these coefficients; the triangles at the top represent the line positions,

the height indicating the intensity decade in which the line strength falls.

5.2 COMPARISON WITH FREVIOUS RESULTS

It is somewhat difficult to ccmpare the present calculation results
with those obtained by other authors, due to the fact that atmospheric slant
paths have been used in the computation, rather than fixed temperature and
pressure paths. However, Plass* has used his previously published results
to calculate atmospheric slant path transmission from four different altitudes
(15, 25, 30, and 50 km) to the cuter limits of the earth's atmosphere.

12

Comparison shows considerable disagreement between the two calculations
(Fig, 8). The differences are most severe in the Q-branch regions, both at
the main Q-branch (667.4 cm=1) and those at approximately 620 em™ and 720 cm~l.
The integrated absorptions, I,
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for the different altitudes have been calculated (Table I) and show large

TABLE I. INTEGRATED ABSORPTION, I, FOR THE 15u COz BAND
VERTICAL PATH FROM THE INDICATED ALTITUDES

Altitude (km)

15 25 50 50
I (this calc) 60.0 17.9 9.38 1.28
I (Plass) 73.9 27.4 13.0 1.05

divergences. There are many possible reasons for this, including the
following:

a. The present calculation used 0.0314% COz by volume compared with
0.03%3% used by Plass; the effect on the calculations is small.

b. Plass was forced to use the Curtis-Godson approximation which, as
has been shown, tends to overestimate the absorption.

¢. The line strengths used were not in perfect agreement.

d. Probably the greatest single cause is the use of the quasi-random
band model. The generally unsatisfactory nature of this model in
the region of the Q-branches has already been discussed and is fully
borne out by comparison in Fig. 8. The present calculations in-
dicate a marked minimum of absorption between the main P- and Q-
branches (665.0 cm™1), while the model exhibits a maximum at the
same point (it should be pointed out that Plass' results have been
considerably smoothed by the calculation technigue).

The path from 50 km (Fig. 9) deserves particular attention as it is
quite different from the other three altitudes: +the integrated absorption of
this calculation is actually greater than that obtained by Plass. This
phenomenon admits a very simple explanation, in terms of the mixed Doppler-
Iorentz broadening. Near the center of the band where strong lines pre-
dominate in the absorption, the two calculations are in rough agreement
(allowing for the data smoothing). But away from the center, particularly
in the two Q-branches at 620 and 720 cm'l, the predominant lines are of
medium intensity. The value of u for the vertical path from 50 km is ap-
proximately 0.2 atm cm, and in these Q-branches there are many strong lines
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Fig. 9. Transmission for the vertical path from 50 km.

of strength between 0.2 and 0.02 (atm cm)“:L em=l. This corresponds to values
of Su in the range 0.0k to 0.004 cm-l. Reference to Fig. 3 shows that these
values are precisely the ones for which the difference between the pure
Iorentz and mixed Doppler-Lorentz absorption is greatest. It must be con-
cluded that mixed Doppler-Lorentz broadening is of critical importance at
this altitude.

On the other hand, a factor which operates at higher pressures is not
of importance around 50 km. Because the band may very nearly be considered
as a collection of isolated lines, the fact that the band model distributes
them randomly, rather than leaving them in !clumps’' has little influence.

Summarizing, the main theoretical objections to the quasi-random model
have been demonstrated to be of crucial importance in atmospheric trans-
mission calculations and the use of the mixed Doppler-lorentz broadening
has been shown to be mandatory at altitudes near 50 km.

5.3 APPLICATION TO THE SATELLITE INFRARED SPECTROMETER (SIRS)

The SIRS was built to measure the vertical component of the outgoing
radiation from the earth and its atmosphere, at several frequencies in
the 15p COz band, as well as one at 899 em-1 in the window region. In
principle, these measurements can be used to infer the temperature structure
of the atmosphere, by the inversion of an integral equation of the first
kind. A simple error analysis is sufficient to show that, in order to pro-
duce reliable solutions, we must be able to calculate the outgoing radiation
from a given atmospheric temperature structure with extreme accuracy. It
was this problem that, in part, precipitated the investigations outlined in
this report.



The SIRS has a resolution of 5 cm'l and a response function which is
nominally triangular in shape. The intensity of radiation measured by the
instrument is

fvo = of ()T, d/) Buo(v) dv (21)

where Iv is the intensity of radiation at frequency, v

12 is the center of the instrument channel

and ¢VO(V) is the instrument response at frequency, v. For the SIRS

¢VO(V) = 1 _IV_-VQJ_ IV“Vol <5

>

(22)
= 0 lv-vol >5
and
[o ]
v) dv =
f 8, () 5
o]
Now
Ps 3 7u(p) 4 4
I, = I(») = Blv,p) =5~ dp * < 7,(pg)B(V,T) (23)
o]
where
B = +the Planck black body function at frequency, v, temperature, T
€g = the emissivity of the earth's surface
Ty = the temperature of the earth's surface
P = +the atmospheric surface pressure
7V(p§ = +the transmissivity for a vertical path down to pressure p at

frequency, v.

Substituting in Eq. (21)
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4‘ ¢Vo(v)dv '_fvo =LO¢VO(V)j B(V p)—;_)dp'*_esyv(Ps) (V;Ts) dv

[oe]

Ps
-/ f B@@.&Lp))dvdmf B(v,Te)ee( By (v)71(ps) )av

Now, if the spectral region under consideration is narrow, we can replace
B(v,p) by B(v,,p), and also consider € to be constant. Hence

o] Pg d 0
f By (v)av) .1, = f B(vg,p) 5 f vy 7v dv|dp
(0] O (0]

0
+ B(Vo:Tsks\‘/p Bvy 7v(pg)dv (24)
o)
Comparing with Eq. (23)
Ivo IVO<7VO)
where
[e]
f SZ{VO 7y p)av
= 0
Ty (P) = = (25)
. ¢Vo dv

This equation is quite general, and can be used for any response func-
tion, provided B(V,T) is a slowly varying function of frequency throughout
the interval.

With the transmissivity averaged over 0.1 cm™t intervals, it is easy to
evaluate Eq. (25) quite accurately, to obtain values of 7V0(p) at any desired
frequency, Vo, and pressure, p. Calculations have been made between 665 and
714 em=l in 1 em-1 steps (Table II) and the results have been plotted for some
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TABLE TII. TRAMNSMISSIVITIES FOR THE SIRS INSTRUMENT RESPONSE FUNCTION BETWEEN 665 AND 674 WAVENUMBERS

ZENITH ANGLE =

665.0

9833
9784
9721
<9673
«9626

«9565
9491
«9420Q
«9289
9171

«9011
.8868
«8694
«8460
«8245

<7979
.T664
. 7361
6776
6214

#5417
4682
.3806
2719
.1886

1107
0530
.0238
.0040
.0005

00060
.Q000
0000
0000

666.0

« 9674
9705
«9621
«9558
« 9495

+ 9415
.9318
«9228
«9062
8914

8720
8551
8352
+8091
. 7861

. 1584
<7264
«6962
6387
«5840

«5070
«4363
« 3525
« 2492
.1708

.0986
.0462
.0203
.0033
.0004

. 0000
.0000
.0000
. 0000

0 DEGREES

667.0

.9588
«9622
«9515
« 9435
»9356

9254
«9133
.8813
. 8632

«8397
8195
. 7961
« 7662
e 7403

. 7099
6756
06437
«5845
«5293

«4530
«3845
«3053
2107
1413

<0362
.0155
<0025
.0003

. 0000
+0000
.0000
« 0000

668.0

«9595
« 9560
« 9436
«9343
«9253

.9137
. 8999
.8869
«8635
«8429

.8162
« 1934
7672
7339
«7055

6724
6356
6020
«5405
<4843

<4082
«3411
.2653
1777
«1157

.0625
0270
.0017
.0C02

. 0000
«0000
. 0000
«0000

669.0

« 3699
« 9605
«9490
« 9405
.9324

9218
« 9094
. 8976
.B8762
.8570

.8319
. 8099
. 7841
7503
. 7206

«6851
« 6450
. 6080
« 5400
<4783

« 3958
3244
« 2457
. 1580
.0987

«0501
.0198
0073
0009
.0001

.0000
.0000
.0000
. 0000

670.0

9755
«9677
«9581
«3509
«9440

9351
«9244
9143
.8956
.8786

« 8557
«8352
8105
«TTT72
« 7470

.7101
«6673
6272
«5531
<4857

«3961
3196
«2367
« 1469
.0880

0416
<0144
0044
«Q003
.0000

0000
.0000
.0000
.0600

671.0

9814
.9752
<9675
«9618
«9562

«9489
«9402
«9319
9161
9015

.8812
<8625
.8393
.8070
. 7769

«7391
«6944
«6521
«5730
«5010

. 4055
«3247
«2380
1453
.0856

.0393
.0129
.0002
0000

0000
.0000
.0000
. 0000

672.0

«9874
9828
«9770
9727
+9685

«9629
+9562
« 9496
+9368
+9245

«9069
«8900
«3684
«8373
8074

«7690
. 7228
.6784
«5952
«5191

«4185
«3338
«2436
«1479
.0863

.0388
0124
0034
«0002
0000

0000
.0000
.0000
0000

673.0

«9924
= 9894
«9852
«9820
9789

«9747
«9695
9643
«9538
«9435

«9280
9125
8921
.8618
.8318

«7925
. 7447
«6983
.6108
«5306

«4251
«3369
2438
« 1460
.0839

.0367
0112
.0029
. 0001
0000

0000
.0000
«000G0
. 0G00

674.0

9933
»9906
.9868
.9838
.9808

<9767
«9716
«9665
«9561
«9458

«9302
<9147
«8941
8634
8330

«7931
« 7444
«6078
5262

«4190
«3302
«2371
«1400
.0789

0333
0096
«0024
0001
.0000

.00GG
.000¢
.0000
.0000

PRESS(MB.)

«30
.60
1.00
1.30
1.69

2.00
2.50
3.00
4.00
5.00

6.50
8.00
10.00
13.00
16.00

20.00
25.00
30.00
"0.00
50.00

65.00
80.00
1060.00
130.00
160.00

200.00
250.00
300.00
400.00
500.00

650,00
800.0C
1000.00
1013.25

WS WN -
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of these values (Fig. 10). It can be seern that the curves representing the
main R-branch of the 15 COz band form a family, the members of which are
similar in shape, only displaced downward as the distance from the center of
the band increases. 678.0 em-1 represents the maximum absorption in the R-
branch at atmospheric temperatures.

At frequencies near the main Q-branch, the behavior is somewhat different.
At low pressures the absorption is much greater than in the R-branch but does
not increase as rapidly with increasing pressure. This gives rise to a strik-
ing feature of the graph: below about 60 mb the absorption for a vertical
path in the strongest part of the R-branch; is greater than the strongest
part of the Q-branch, for the SIRS instrument response function. This char-
acteristic can also be observed in the transmissivities averaged over 5 cm™L
intervals, although it occurs at a higher pressure.

The calculations also make it clear that in the upper atmosphere; for
the SIRS instrument response function, the maximum absorption takes place at
668 cm-1, rather than at 669 cm™t where the 5 cm™l interval transmissivities
have an absorption maximum. On the basis of these figures, the present channel
at 669 cm~' should be moved to 668 cm'l, where absorption is greater at high
altitudes.

The outgoing vertical intensity of radiation, as seen by the SIRS, has
been determined for the U. S. Standard Atmosphere, 1962, between 665 and
714 em™l and is presented in Fig. 11.

Comparision of Table II with Appendix C show that it is important to
calculate absorption for an instrument response function, rather than an
average over an interval in the band corresponding to the instrument's resolu-
tion. This 1s a persuasive argument against the use of a band model.

5.4 ACCURACY OF THE CALCULATTIONS

Throughout this report a number of assumptions have been made, which
affect the accuracy of the calculations. The most critical of these are
listed below and their influence discussed.

a. In the author's view the most important factor is the Lorentz half-
width, o, which was taken to be 0.064 em™l for all lines. Test
calculations showed that the effect of variations in Q@ depended on
the pressure, line strength, and position relative to other lines.
Its effect was least at low pressures.

b. The accuracy of the line strengths and positions has been fully dis-
cussed by Young.
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TABLE

Departures of temperatures from the U. 5. Standard Atmosphere are
important in some parts of the band, where the line strengths are
rapidly varying functions of the temperature. Calculations were
made for small portions of the band with a temperature profile ex-
actly 10°K less than the U. S. Standard Atmosphere (Table III).

IIT. COMPARISON BETWEEN TRANSMISSIVITIES AVERAGED OVER 1.0 cm—l

INTERVALS. CALCULATED FOR U. S. STANDARD ATMOSPHERE, 1962,
AND SAME ATMOSPHERE IESS 10°K AT ALL IEVELS.

p(mb)

556 cm~L1 652 cm—1 661 cm~1 669 cm~L1
US. oo UsSe _joex UsS. _oec UsS.  _oeg

‘Stand. Stand. Stand. Stand.

1

1.0000 1.0000 .9832 .9832 .9871 .9870 .9525 .9592

.9999  1.0000 .9295 .9302 .9l32 .9k16 .89L5 .901%

20

-9999 .9999  .TkO3 -Thet TT1L . 768k <1525 7871

50

.9997 L9998  .LzLh] L38Y L1785 A3 5066 .558L

200

.9982 .998k4 L0117 .0120 .0187 .0183 .0225 .0316

1000

.9601 .9629 .0000 .0000 .0000 .0000 .0000 .0000

Comparison shows that the higher temperature produces a greater
absorption in most regions (up to 10% between 668.5 and 669.5 cm'l),
although in other parts of the band where the absorption is dominated
by strong lines whose strength decreases with increasing temperature,
the opposite effect may be observed (660.5 to 661.5 em™L). As the
temperature increases the shape of the absorption curve can be ex-
pected to change slowly and the total absorption for the band to in-
crease slightly. The effect of temperature on line half-widths
(Doppler and Lorentz) seems to be of secondary importance.

Small variations in the COz concentration, provided a constant mixing

ratio is retained, have a negligible influence, but corrected trans-
missions may be obtained by interpolation over the zenith angle; in-
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creasing the zenith angle from ©; to ©z is equivalent to multiplying
the COz concentration by Cos 9,/Cos ©z.

A1l transmissivities have been given to four significant figures; the
fourth figure should be correct in almost all cases.

In view of these approximations, it is tempting to argue that there is
no point in carrying out calculations to such a high degree of accuracy.
This ignores two basic points.

a. The present calculations should be regarded as preliminary: when
more accurate data are available the technigues will be fully de-
veloped for their utilization. Until recently, the theoretical
knowledge of the 15u COz band exceeded the capacity to put it to
use; the situation i1s now reversed.

b. For some problems, e.g., radiative cooling in the atmosphere, it is
extremely important, with given initial assumptions, to be able to
calculate radiative transfer precisely. It is not sufficient to be
able to obtain a rough representation of most of a band with a band
model if it cannot predict transfer in special regions (e.g., Q-
branches in the 15u COp band), which are particularly influential.

5.5 COMPARISON WITH GATES ET 52.15’16

Shortly after the present calculations were initiated, a paper by
Gates, et al.,l5 appeared in which transmission calculations for the 2.7u
water vapor band were presented, made by integration across the band rather
than by use of a band model. The approach i1s fundamentally the same but the
emphasis here has been placed on atmospheric slant paths, rather than homo-
geneous paths. In addition the wide range of pressure has made it necessary
to use mixed Doppler-Lorentz broadening.

4



6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

As a result of the calculations that have been made, it is possible to
come to some significant conclusions regarding atmospheric radiative transfer
in the 15u CO2z band.

a. Band models can no longer be considered useful where accurate work
is required. Even the best model falls far short especislly for
certain regions of fundamental importance. The models can be crit-
icized on several grounds:

(1) Most important, they do not adequately represent the line
positions and strengths.

(2) They force the use of the Curtis-Godson approximations.
(3) Their simplicity is lost when the mixed line shape is introduced.
(%) Instrument response functions cannot be built in.

(5) Variation of Lorentz half-widths are not easy to accommodate.
Although the present calculations assume a fixed I, it would
be easy to modify the program for a variable half-width.

b. The mixed Doppler-Lorentz line shape should be used at pressures
lower than 100 mb. Below 10 mb the errors introduced by the use of
pure Lorentz broadening can become quite severe.

c. The Curtis-Godson approximation, which has undeniable utility for
rough calculations, should be abandoned for highly accurate work.
A method for its elimination has been developed.

d. Values of transmission for instruments should be obtained by in~
tegration of the instrument response function. These values can
differ radically from the average transmission over a frequency in-
terval equal to the instrument's resolution.

It is now evident that a considerable amount of investigation should be
carried out in the near future.

a. A concerted effort should be made to determine the variation of o1,
from line to line.
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b.

Calculations are now underway of -the transmission for homogeneous
paths, so that direct gomparison can be made with laboratory data
(cf., Gates et al.™?71°) and other theoretical calculations. As
a result of the comparisons it may be possible to arrive at some
more accurate values of band intensities or half-widths.

A renewed attempt will be made to find the cooling rate in the upper
atmosphere due to the 15p COz band.

It is hoped the tables presented will be useful for atmospheric infrared
radiation calculations, particularly in those regions where reliable the-
oretical data were hitherto unobtainable.
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APPENDIX A

CDC 3600 FORTRAN PROGRAMS FOR COMPUTING THE TRANSMISSIVITIES
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ho

200
201
281

250"

251
252
253
26C

301

302

305

304
303

300

802

601

600

PROGRAM SUBPROG
COMMON NOSTRGsL sNOINT sNOINsNEND s IWARN

DIMENSION NOSTRG(10)sL{100)sNOINT(72).sNEND(144) s IWARN(10)
DIMENSION ISTRGL(100) s IWEAKL(100)sIVST(300)sBNUS(1000)sINUS(1000)s
1 THORLO(100) s IBELOW(100) sBNUW(1010) s INUW(1010) sNOWEAK(10) sMIWEAK(10
10)»D(1000)»SM(18)+155(1010)sST(65982) sWT(651010)
DIMENSION ENDPT(144)sHIORLO(100)sBELOW(100)
FORMAT (F64256E1044)
FORMAT (F642415)
FORMAT (6Xs7159sF7a1)
FORMAT (1H1sF642+121252145111291011/(6X36E10e4))
FORMAT (6X»14(I11914))
FORMAT (6X514(211+13))
FORMAT ((6Xs24(13)))
FORMAT (24HO TOTAL EXECUTION TIME = F6e2s 8H. MINUTES)
TIMA=TIMEF(0)
REWIND 20
READ INPUT TAPE S5y 200+ (BNUS(I)s(ST(Js1)9J=196)s1=19982), (BNUW(I)
1(WT(Js1)sJ=156)+12151008)

DO 301 1=1+982

ISS(I)=(1-1)%6

11=1

12=1

TONE=1

1TWO=0

13=1

K1D=1

INUS(983)=100000

INUW(1009)=100000

ISTO = 1

10 = 1

DO 302 1=1,1008

INUW(I)=(BNUW(I)+4001)%1000

Jo =1

JdJ=4

DO 303 1=1,982

IF ( ST(JJJ)=el) 30453049305

IVSTiJJ) = 1

JJ = Ju+l

JJdJd = JJI+6

INUS(T)=(BNUS(1)+.001)%100e

JJ = Ju-1

READ INPUT TAPE 5,2015ANUZsNUMBER

ICOUNT=0

NUZ=ANUZ+.001

NUZZ=(NUZ/10)%10

AVNU=NUZZ

AVNU=4 4 5+AVNU

NUZY=NUZZ#*100

NUZX = NUZY-750

15=10NE

DO 600 I=15s982

IF (NUZX-INUS(1)) 60156014600

IONE=1

GO TO 602

CONTINUE

IONE=983

1TWO1=982

GO TO 607

i T U T T,



602

604
603

607

621
620

622

624
623

630

611
610

626
627
801
309

308
307

310

313

311

312

320

NUZV = NUZY+1650

1S=XMAXOF (ITWOs 1)

DO 603 I=15+982

IF (NUZV-INUS(I)) 60446039603
ITWOl=1~-1

GO TO 607

CONTINUE

1TWO1=982

CONTINUE

I0UT = XMAXOF(ITWO+1sIONE)
I1TWO=1TWO1

NUZY=NUZY-50

15=13

DO 620 I=1S»1008

IF (INUW(I)I-NUZY) 62096219621
13=1

GO TO 622

CONTINUE

13=1009

15=13

NUZY=NUZY+1000

DO 623 1=1S5,1008

IF (INUW(I)-NUZY) 62396239624
la=1-1

GO TO 630

CONT INUE

14=10068

IMAXW=14-~13+1

IK=13~1

WRITE OQUTPUT TAPE 692819 IONEsITWO»IOUT»IMAXWsIKs13s149AVNU

WRITE TAPE 20sIONEsITWOsIMAXWSIKsAVNU
IF (IOUT-ITWO) 61116114610

WRITE TAPE 20s(BNUS(I)»(ST{(JsI)sJ=1+6)sI=10UT+1TWO)
CONTINUE

IF (IMAXW) 627+627+626

WRITE TAPE 20s(BNUWII) o (WT(JsI)eJ=196)s1=13914)
CONTINUE

NUZ=(ANUZ-+4499)%100.

DO 307 K=10,1008

IF (INUW(K)=NUZ) 30859309+309

I=X

GO TO 310

CONTINUE

CONTINUE

1=1009

CONT INUE

DO 311 K = 15704982

IF (INUS(K)-NUZ) 3113139313

IST = K

GO TO 312

CONTINUE

I1sT=983

NUZ = ANUZ+.001

NUZM=NUZ*100-~60

D0 320 K = KIDyJJ

KK = IVSTI(K)

KD = K
IF (INUS(KK)~NUZM) 3203209322
CONTINUE
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L

322

331
445

446

333

332°

335
336

340
440

341

344

343
346
345
342

400
410

350

353
354
355
352
356

358
359

KD=JJ+1

KID = KD=-1
- I =1
ITCTAL = O
11Is =1
JTOTAL = 0

DO 351 J=1+10

INUZM = NUZM + 10%J
MIDNU = INUZM+5

IF (982-KID) 44554464446
IWARN(J) =1

GO TO 336

KAD=IVST(KID)

IF (MIDNU-INUS(KAD)-10) 33243324333
KID = KID+1

GO TO 331

IWARN(J) =1

IF(XABSF (MIDNU-INUS(KAD))-10) 33543364336

IWARN(J) = 0

NOWEAK(J) = O

NOSTRG(J) = O

If (1009-1) 34243424440
TALFA=INUW(T)=-INUZM

IF (TALFA=-10) 34193414342
NOWEAK(J) = NOWEAK(J)+1
ITOTAL = ITOTAL +1
IWEAKL(II)=1

MTWEAK(II)=1

IF (IALFA-10) 34393449343
MTWEAK(II) = 2

IT = I1+1

GO TO 342

IF (IALFA) 34693464345
MTWEAK(II) = 2

IT = II+1

I = 1I+1

GO TO 340

CONTINUE

10 = 1

IF (IST-983) 41093515351
JALFA=INUS(IST)-INUZM

IF (JALFA-10) 350435049351
LIIIS) = JALFA

NOSTRG(J) = NOSTRG(J)+1
JTOTAL = JUTOTAL+1
ISTRGL(TIIS)=IST

IF (JALFA~10) 35243534352

IHORLO(IIS) = 1

IBELOW(IIS) = 1

IF (INUS({IST)-INUS(IST-1)-1) 354,354,355
IBELOW(IIS) = 0

IS = JTIS+1

GO TO 351

IF (JALFA) 35643564357

THORLO(IIS)Y = 1

IBELOW(IIS) = 1

IF (INUS(IST+1)~-INUS(IST)=~1) 358,358,359
IBELOW(IIS) = O

GO TO 360
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357

361
362
363
364
360

351

461
460

462

464
463

465

402
371

401

372
403

406
373
405

374
370

THORLO(IIS) = 2

IBELOW(IIS) = 2

IF (INUST{IST+1)—~-INUS(IST)I=1) 36193614362
IBELOW(IIS)Y = 1

IF (INUSCIST)-INUS(IST-11-1) 36393639364
IBELOW(IIS) = IBELOW(IIS)-1

CONTINUE

I11S = 11541

TIST = IS8T+1

50 TO 400

CONTINUE

ISTO=1IST

BNU = ANUZ-~745

1S=XMAXOF (1,11)

DO 460 1=15+982

IF (BNU-BNUS(I)) 4614609460

11 = I-1

GO TO 462

CONT INVE

11=982

BNU = ANUZ +745

Is=12

DO 463 I=15+982

IF (BNU-BNUS(I1)) 46494642463

12 = 1

GO TO 465

CONTINUE

12=983

IFIRST = I1+1

ILAST = 12-1

KK = 0

DO 370 M1=0s2

Y = M1-1

BNU = ANUZ+Y/2.

IF (11)401+401+402

DO 371 I=1,11

D(1) = (BNUS(I)=-BNU)®(BNUS(I)-BNU)
IF(982-12) 403940149401

DO 372 1=12,982

D(I) = (BNUS(I)-BNU)*(BNUSII)-BNU)

DO 370 K=1+6

S = O

KK = KK+1

IF (I1) 40544054406

DO 373 I=1,11

ISUB = ISS(I)+K

S = S+ST(ISUBYI/DI(I)

IF (982-12) 370+405»405

DO 374 I=12,982

ISUB = ISS(I)+K

S = S+STUISUB)Y/D(I)

SM(KK) = §

CALL GRONK

WRITE OUTPUT TAPE 69250+ANUZ s ITOTAL s (NOWEAK(I)sI=1510)9sJTOTALS
1IFIRSTSILASTs (NOSTRG(I)sI=1910)sNOINo (NOINT{I)soI=19i0)s(SMilI)sl=ly
218)

WRITE TAPE 20+ANUZ»ITOTAL s (NOWEAK(I)sI=1910)sJTOTALsIFIRSTSILAST
1(NOSTRG(I)sI=1s10) s NOINp(NOINT(I)sl=1s10)s(SM(I)sI=1+18)
IF (ITOTAL) 38053809381
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381 WRITE OUTPUT TAPE 63251 (MTWEAK(I)s IWEAKL(I)sI=1»ITOTAL)
WRITE TAPE 20s(MTWEAK(I)»IWEAKL(I)»I=19ITOTAL)
380 IF (JTOTAL) 383+383,382
382 WRITE OUTPUT TAPE6+¢252s (IBELOWII)sIHORLO(I)SISTRGL(I)»I=19JTOTAL)
DO 90C I=1+JTOTAL
BELOW(I)=IBELOW(I)
900 HIORLO(I)=IHORLO(I)
WRITE TAPE 20+ (BELOW(I)sHIORLO(I)»ISTRGL(I)»I=1+JTOTAL)
383 IF (NOIN) 38543854384
384 NON = NOIN%*2
WRITE OUTPUT TAPE 69253 {(NEND(1)sI=]1sNON)
DO 901 I=1sNON
901 ENDPT(I)=NEND(I)#*,01
WRITE TAPE 209 (ENDPT(I)sI=1sNON)
385 CONTINUE
ICOUNT=TCOUNT+1
IF (NUMBER-ICOUNT) 300+300+306
306 ANUZ = ANUZ +1.
NUZ=ANUZ+,.,001
IF (NUZ-(NUZ/10)*10) 801+802+801
300 TIMB=TIMEF(O)
TOTTIM=(TIMB-TIMA)*,001/60
WRITE OUTPUT TAPE 6+260sTOTTIM
END FILE 20
REWIND 20
END
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301

302

303

330
304
306

305

340
307

350
320

311
201

321
323

370

360

SUBROUT INE GRONK

COMMON NOSTRGsL sNOINTsNOINsNEND s IWARN
DIMENSION NOSTRG(10)sL(100)sNOINT(72) ¢NEND(144) s IWARN(10)
KK = 1

Ml = 1

DO 300 I = 1s10

MINIT = M1

M =0

J = NOSTRG(I)

IF (J) 3019301s302

NEND(M1) = O

NEND(M1+1) = 10

M1 = M1+2
M =1
GO TO 320
K =1

IF (L(KK}=2) 3304303303
NEND(M1) = O

NEND(M1+1) = L{KK)-1

M1 = M1+42 '

M = M+1

IF{K~J) 304»3409304

IF (L{(KK+1)-L(KK)~2) 30553055306
NEND(M1) = L{KK)+1

NEND(M1+1) = L(KK+1)-1

M1 = M1+2
M = M+]
K = K+1
KK = KK+1

IF(K=J) 330434045330

IF (L(KK)=8) 307+307+350
NEND(M1) = L(KK)+1

NEND (M1+1) = 10

M = M+1

M1l = M1+2

KK = KK+1

CONT INUE

IF (IWARN(I)) 3115311312
MZERO = M

JJ=1

IF (JJ-MZERO) 321+321+380

IF (NEND(MINIT4+1)~NEND(MINIT)-3) 360+360,323
M=M+2
IX=NEND(MINIT+1)~-NEND(MINIT)
I1=(1X+1)/3

I2=(2%]1X+1)/3

MALL = M1 - MINIT -1

DO 370 II=1sMALL

MSUB = M1-11
NEND(MSUB+4)=NEND (MSUB)
NEND(MINIT+1)=NEND(MINIT)+I1
NEND(MINIT+2)=NEND(MINIT+1)}
NEND(MINIT+3)=NEND(MINIT)+12
NEND(MINIT+4)=NEND(MINIT+3)
M1=M1l+4

MINIT=MINIT+4

MINIT = MINIT+2

JJd=JdI+1

GO TO 201
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48

380
312
300

$DATA

CONTINUE
NOINT(I) = M
CONTINUE

M1 = Ml-1
NOIN = M1/2
RETURN

END

DATA 1S5-

982 STRONG LINE POSITION AND STRENGTH CARDS
1008 WEAK LINE POSITION AND STRENGTH CARDS

STARTING FREQUENCY(=500.0)

AND NUMBER(=360) OF INTERVALS



530

531

510

511

THilimm nn '

PROGRAM MAIN

COMMON AKNUSALFAsANUSANUZ sBETAsCNRsCO2P129GsGAMASPZsPZA»SECsSNs
1SQTAsSRZsSRZAsSSLsSTsTRANs TRANCsTRANSsWAIToWWA» 11 ISTsJIMAX9KADD
2KMAX 9 KSLA gM9KMESS 9KSTOP

DIMENSION AKNU(1260)sANU(225) sALFA(35)sBETA(35)9sCNR(35)+G(36)
1GAMA(35)sPZ(35) SEC(6)9SSL(69225)9sSN(150)9SRZ(36),ST(T7875)

2 TRANC(210) s TRANS(210) sWAIT(36)+I5T(225)sPZA(35)sSRZA(3
35)9SQTA(35) s TRAN(10+210)

DIMENSION AL (35) ,BELOW(100) +ENDPT(100) sENGTH(36)+sENG(9)sPI(36)s
1P(:35) sPDI(35)sSM(18)9SQAT(25)sTI(36)sT(35)sTM(35)eW(36)sWWLI(69120)
2WT(35) sWAB(4) s ISTRGL(100) » IWEAKL(100)sIA(225)+ITN(35)sMTWEAK(100)
3NOINT(10) yNOSTRG(10) s NOWEAK(10) sHIORLO(100)»12ZEN(6)

DIMENSION PDIG(35)9sADOP(35)sPAVI35)sZA(20)+ZW(20)eGNU(36) +JUMP(35)

TIMA=TIMEF(0)

CALL TRAP

TIMEON

REWIND 20

REWIND 21

MAXNU=859

G(l)=1e

SRZ(1)=0s

CALL KNUMIX(X»YsOUTs1)

READ INPUT TAPE 59800 sKMAXsKSLASPCO2sY1oY2s(W(1)s1=1s4)s(ZA(])sI=1
1910) 0 (ZW(I)sI=1910)s(ENDPT(I)sI=19s10)9(ENG(I)»I=199)s(IZEN(I)>
2SEC(I)el=x]14KSLAY

DO 530 1=1,10

ZA(I+10)==ZA( 1)

ZW(I+10)=ZW(I)

DO 531 I=1,9

WBA=(ENDPT(I+1)~-ENDPT(1))/2¢

WBB WBA+ENDPT(I)

WAA1=WBAx*Y1

WAA2=WBA#*Y2

GNU(4%*1-3)=WBB~-WAA1

GNU(4%]1-2)=WBB~WAA2

GNU(4%]~1)=WBB+WAA2

GNU(4*T1)=WBB+WAA1

AAA= L4064

PPP=1013425

TTT=29840

DOP=5¢974E~4/(TO0*#SQRTF(2504))

ELOG2=LOGF(24)

PILOG=SQRTF(ELOG2/341415927)

ELOG2=SQRTF(ELOG2)

DOPA=DOP/ELOG2

ROOTPI=SQRTF(3.1415927)

ALLAIR=7600e/1¢2250%1435951/288415%#273+15

ALLCOZ2=ALLAIR®*PCO?2

CO2PMB=ALLCO2/PPP

CO2P1=CO2PMB/341415927

CO2PI2=CO2P1/2.

DO 510 K=5436

WIK)=W(K=4)

DO 511 J=1,36

L=(J+3)/4

ENGTH(J)=W(J)*#ENG(L)

KMESS=10#% (KMAX®#KSLA-1)

KO= KMAX®#KSLA

KLOT=KO*10

TIMA
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KNU = KMAX*36
AAA=AAA/PPP
ALPHA=AAA*AAA*TTT
DO 500 1=1+225
JA = I-1
IST(I) = KMAX¥*JA
500 IA(I)=6%JA
KADD = KMAX¥*10
ISWCH = 1
KPLUS=KMAX+1
READ INPUT TAPE 5s 801s(PI(K)sTI(K)sK=1sKPLUS)
11=-1
PLOOK=10.
DO 100 K=1sKMAX
KPLUS=K+1
P(K)=PI(KPLUS)
T(K)=TI(KPLUS)
TASC(TI(K)I+T(K)) /24
SQT(K)=SQRTF(TA)
SRZ(KPLUS) = P(K)*P(K)
PZA(K) = 4009%*P(K)
SRZA(K) = SRZI(KPLUS) - SRZ(K)
PZ(K) = #+00025%P(K)
ALFA(K) = ALPHA/TA
SQTA(K)=SQRTF(ALFA(K})
CNR(K)=CO2PI2/SQTA(K)
BETA(K)=ALFA(K)*SRZA(K)
GAMA(K) = ALFA(K)*SRZ(K)
AL(K)=SQTA(K)%#(PI(K)+P(K))/2e
PDI(K)=(P(K)=P1(K))*CO2PMB
ADOP (K)=DOPA¥SQT (K)
PAVIK)=(PI(K)+P(K))/2
PDIG(K)=(P(K)=PI(K})/2e
IF (P(K)~-PLOOK) 970+9705971
971 I1=11+1
PLOOK=PLOOK*11,
970 JUMP(K} =11
TAA = TA - 325,
DO 101 N = 16
TAA = TAA + 25,
IF (TAA) 10151015102
102 ITN(K) = N
GO TO 103
101 CONTINUE
103 TN = ITNI(K)
TP = 325 - 25.%TN
100 TM(K) = (TA=~TP)/25.
TIMB=TIMEF(0)
TIM = (TIMB-TIMA)#%*,001
WRITE OUTPUT TAPE 6+8605TIM
TIMA=TIMB
110 READ TAPE 20sIFIRSTsILAST»IMAXWs IKsAVNU
15UB=1
DO 900 I=136
DELNU=GNU(1)
IF (DELNU-+003) 90145025502
901 I11=-1
GO TO 903
902 IF (DELNU=¢2) 90499055905



904 11=0
GO TO 903

905 11=1

903 CONTINUE
DO 909 K=1sKMAX
IF (JUMP(K)) 91099115940

910 IF (I1l) 92099305940

911 IF (I1) 93099309940

940 YB=BETA(K)/(GAMA(K)+DELNU*DELNU)}
YB=YB/({YB+2e)
YC=YB*YB
QUT=CO2PI/SQTA(K)*YB¥(14+YC*(¢333333334+42%YC))
GO TO 950

930 0UT=0.
DOPLER=AVNU*ADOP (K)
DO 931 J=1+20
YB=BETA{K)/I{GAMA(K)+(DELNU-ZA(J)*DOPLER)*(DELNU-ZA(J)*DOPLER))
IF (YB-e2) 93299324933

932 YB=YB/(YB+2.)
YC=YB*YB
OUT=0UT+YB*(1e+YC*(433333333+42%YC))IRZIW(J)%2e
GO TO 931

933 OUT=0UTHLOGF (1le+YB)*ZW(J)

931 CONTINUE )
OUT=0UT/ROOTPI*CNR(K)
GO TO 950

920 DOPLER = AVNU*ADOP(K)
YY=SQTA(K)/DOPLER
X=DELNU/DOPLER
Y=YY* (PAV(K)=~e57735027%*PDIG(K))
CALL KNUMIX({XsYsOUT192)
Y=YY®*(PAV(K)+e57735027%PDIG(K)}
CALL KNUMIX(XsYsOUT92)
OUT=(0UT+0OUT1)*#PDIG(K)/DOPLER*CO2PMB/ROOTPI

950 AKNU(ISUB)=QUT

909 I1sSUB=IsSUB+1

900 CONTINUE
IJ = IFIRST-1
IMAX = ILAST-1J
GO TO (4019402) s ISWCH

401 TJKL=1
GO TO 403

402 IJK=ILASTA-IFIRST+1
IF(1JK)4019401+404

404 ISHIFT=IMAXA-IJK
IF (ISHIFT) 41054104411

411 DO 405 I=1s1JK
J = I+ISHIFT

405 ANU(I)=ANU(J)
ISHIFT = ISHIFT®#KMAX
TJKJ = TJK¥KMAX
DO 406 I=191UKJ
J=I+ISHIFT

406 ST(I)=ST(J)

410 TJKL = JJK+1

403 IF (IMAX-TJKL) 41294134413

413 READ TAPE 20 s (ANU(I) 9 (SSL(Js1)9J=156)sI=TJUKLsIMAX)
ISUB=IST(IJKL)
DO 450 I=T1JKLsIMAX
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DO 450 K=1sKMAX

1SUB=ISUB+1

JA = TA{II+ITN(K)

SSL1 = SSL(JA-1)

§SL2 = SSL(JA)

SSL3 = SSLIJA+1)
450 ST(ISUB) = SSL2+({SSL1+SSL3-SSL2-SSL2)*TM(K)+SSL1~-SSL3)*TM(K) /2
412 ILASTA = ILAST

IMAXA = [IMAX

ISWCH = 2

IF (IMAXW) 42094209421
421 READ TAPE 20 (DUMMY s (WWL(JsI)sJ=196)91=19+sIMAXW)
420 CONTINUE

TIMB=TIMEF(O)

TIM = (TIMB-TIMA)%*,001

WRITE OUTPUT TAPE 6+861,TIM

TIMA=TIMB
120 READ TAPE 20» ANUZ»ITOTAL » (NOWEAK(I1)sI=1910)9sJTOTALsI1l»I2

15 (NOSTRG(I)sI=1910)sNOINs (NOINT(I1)sI=1410)9(SM(I)sI=1,18)

IF (ITOTAL) 380+380+381

381 READ TAPE 20» (MTWEAK (1) IWEAKL{(I)sI=1+ITOTAL)
380 IF (JTOTAL) 383,383,382
382 READ TAPE 20, (BELOW(I)sHIORLO(I)»ISTRGL(I)»Ix=1sJTOTAL)

383 IF (NOIN) 385,385,384
384 NON = NOIN¥2

READ TAPE 20, (ENDPT(1)9I=14NON)
385 CONTINUE

11 = 11 - 1J

12 = 12-1J

DO 130 K=1sKMAX

DO 130 N=143

JA = TA(NI+ITN(K)

SUM1 = SM(JA-1)
SUM2 = SM(JA)
SUM3 = SM({JA+1)
IsuB = ISTI(N) + K
130 SN{ISUB)=SUM2+( (SUM3+SUM1~-SUM2~-SUM2 ) %#TM(K)+SUM1-SUM3)%*TM(K) /2.
M1 = 1
M2 = 1
M3 =1
DO 303 M = 1410
ANUO = M-¢

ANUO = ANUZ + ANUO#¥,1
IF (NOINT(M)) 304+304,305
304 DO 1304 I=1sKO
1304 TRAN(MsI1)=0.
GO TO 2304
305 NOIN = NOINT(M)
DO 999 I=1sKO
999 TRANS(I)=0e
DO 306 MM = 1sNOIN
WA = ENDPT(M1)
WB = ENDPT(M1+1)
KSTOP = KMAX+1
WBA=(WB-WA)/2 e
WBAA=WBA%*10.
WBB=WBA+WA
WAA1=WBA¥*Y1
WAA2=WBA¥*Y2
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WAB(1) = wBB - WAAl
WAB(2) = WBB -~ WAA2
WAB(3) = WBB + WAAZ2
WAB(4) = WBB + WAA1l

DO 200 III = 1ls4
11 = II11I
BAD WAB(II) + ANUO
WWA W(II)*WBAA
CALL LOOKAT(BADsI1lsl291)
200 CONTINUE
306 M1 = M1+2
2304 CONTINUE
IF (NOSTRG(M)) 3079+307,308
308 NOST = NOSTRG (M)
DO 309 MM = 1,4NOST
LS = ISTRGL(M2)-1J
FACTER = HIORLO(M2)#.05
FACTOR = BELOW(M2)#405
DO 211 K=1%KO
211 TRANC(K) = Qe
DO 212 J = 1s12
212 WAIT(J) = WIJ)/10.*#FACTER
DO 213 J=13s16
213 WAIT(J) = WIJ)/5+*FACTER
DO 214 J=17+20
214 WAIT(J) = W(J)/2.%*FACTOR
JMAX = 20
ISUB=TIST(LS)+1
CALL CENTRE(ST(ISUB))
IF (LS-11) 20342034202
202 CALL LOOKAT(ANU(LS)sI1lsLS~1s2)
203 CALL LOOKAT(ANUILS)sLS+1912:3)
309 M2 = M2+1
307 CONTINUE
IF (NOWEAK(M)) 30343034311
311 NOWE = NOWEAK (M)
IWSCH=0
DO 312 MM = 1sNOWE
I1SUB = IWEAKL (M3)-IK
DO 600 K=1sKMAX
JA = TAUISUB)I+ITNI(K)

SSL1 = WWL(JA=1)
SSL2 = WWL(JA)
SS5L3 = WWL(JA+1)
600 WT{K) = SSL2+{(SSL1+SSL3-55L2~55L2)#TM(K)+SSL1~-SSL3)*#TM(K) /2

IF (MTWEAK(M3)=-1) 601+601+602
601 DO 603 K=19KO
603 TRANC(K) =-19.
IF (IWSCH=1) 65096055650
650 IWSCH=1
DO 604 J=1+36
604 WAIT(J)I=10*ENGTH(J)

GO TO 605
602 DO 606 K=1sKO
606 TRANC(K) = =9,

IF (IWSCH=-2) 65146059651
651 IWSCH=2

DO 607 J = 1936
607 WAIT(J)1=5*ENGTHI(J)
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605 JUMAX = 36
CALL CENTRE(WT)
KSUB = M
DO 620 K=1KO
TRAN{(KSUB)=TRAN(KSUB) *TRANC(K)
620 KSUB = KSUB+10
312 M3 = M3+1
303 CONTINUE
WRITE OUTPUT TAPE 69850sANUZsIZEN(TI) s (L {TRAN(JsK)}9J=1+10)9sP(K)sK»
1K=19sXMAX)
WRITE OUTPUT TAPE 219851sANUZs (TRAN(K)sK=19KLOT)
TIMB=TIMEF(0)

TIM = (TIMB-TIMA)*¥,001
WRITE OUTPUT TAPE 6+862,TIM
TIMA=TIMB

NUZ=ANUZ+1e1
IF(MAXNU-NUZ) 1000+1001+1001
1001 IF(NUZ-(NUZ/10)%10) 110+1105120
1000 TIMB=TIMEF(0)
TIM=(TIMB-TIMEON)*,001/60¢
WRITE OUTPUT TAPE 69¢863,TIM
REWIND 20
END FILE 21
REWIND 21
800 FORMAT (2134F6e492F1048/4F12410/5F14e8/5F1448/5E1448/5E1448/
110F6e3/9F643/(5(134F10e71)))
801 FORMAT (F7429F6e1)
850 FORMAT (56H1 TRANSMISSION IN THE ONE INVERSE CM INTERVAL CENTRED A
1T F6e1551H INVERSE CMs AVERAGED OVER 1 INVERSE CM INTERVALS. /
215HO ZENITH ANGLE = [3+8H DEGREES/1HO+10F8e4sF10e2s15/(1H »10F8aly

86C3£ég&i;I?Z;HO TIME FOR FIRST SECTION OF THE PROGRAM = F6els8H SECO
8611E82&AT (43H0 TIME FOR MIDDLE SECTION OF THE PROGRAM = F6e198H SECO
c
8621§85&AT (43HO0 TIME FOR CALCULATION IN THIS INTERVAL = F6els8H SECO
863128§&AT (43H0 TOTAL EXECUTION TIME FOR THE PROGRAM = F6els8H MINU
BSII;SS&AT (IH1sF6el/(1H 17FT7e4))
END

i1



201
200

203
204
303

304

206
208

209

210

501
207

214

310

SUBROUTINE LOOKAT (FREQUEII1I1,11125114)

COMMON AKNUSALFASANUSANUZ sBETASCNR9CO2PI129GoGAMAPZsPZA»SECHSNy
ISQTAOSRZoSRZA’SSLosT’TRAN|TRANC’TRANS'HAIToWWAvlloISTgJMAXoKADDp
2KMAX s KSLASMsKMESS 9sKSTOP

DIMENSION AKNU(1260)9ANU(225)sALFA(35)+sBETA(35)sCNR(35)+G(36)>
1GAMA(35)sPZ(35) s SEC(6)9SSL169225)9SN({150)sSRZ(36)+ST(T875)
2 TRANC(210) s TRANS(210) sWAIT(36)s1ST(225)+PZA(35)sSRZAL(3
35)3sSQTA{(35) s TRAN(10+210)

DIMENSION ANY (225)sANZ(225)9KN(225)+GI(6)

111 ITI1

112 1112

FREQ = FREQUE

KSLANT=0

JSLANT=M+KMESS

F = 0o

DO 200 I=7111,112

ANZ(I) = ANU(I)-FREQ

ANY(I) = ANZ(I)Y®ANZ(1)

KN(I) = 2

IsuB = IST(I) +1

IF ( STCISUB)I/(ANY(I)*ANY(I))=~e001 ) 200+200,201

KN(I) =1

CONTINUE

ANUN=FREQ-ANUZ

DO 202 K=1sKMAX

SRE = Qe
KP = K+1
SNNU = Oe

IF ( G(K)=e00005 ) 30093009203

IF ( K-KSTOP ) 2049300,300

GO TO (303+304+303)9114

SN1 = SNI{K)

JA = K+KMAX

SN2 = SN(JA)

JA = JA+KMAX

SN3 = SN(JA)

SNNU = ((SN3+SN1-SN2-SN2)*ANUN#*2.+SN3-SN1)*ANUN+SN2
CONTINUE

DO 214 I=Il1ls112

KK = KN(I)

GO TO (206+207)s KK

IF (ABSF(ANZ(I))=PZA(K) ) 208208+207
ISUB=IST(I)+K
YB=BETA(K)/(ANY(I)+GAMA(K))

IF (YB-e2) 21092109209
SNNUA=LOGF{1e+YB)

GO TO 501

YB=YB/(2++YB)

YC=YB*YB

SNNUAx2 o #YB¥ (1e+YC#(33333333+.2%Y(C))
SRE=SRE-SNNUA*ST(ISUB)*CNR(K)

GO TO 214

IsSuUB = IST(I)+K

SNNU = SNNU + ST(ISUB)/ANY(I)
CONTINUE
F=F+SRE-SNNU#SRZA(K)*SQTA(K)*CO2PI2
DO 310 ISLANT = 1»KSLA
GI(ISLANT)=EXPF(F*SEC(ISLANTY))
G(KP)=GI (1)
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300

311

215

220

340

217

321

218

322
202

GO TO 215

GIKP) = Do

DO 311 ISLANT=1sKSLA

GI({ISLANT) = Oe

CONTINUE

JSLANT=JSLANT-KMESS

GO TO (220+217+218)s114

DO 340 ISLANT=1sXKSLA

KSLANT = KSLANT+1

TRANS (KSLANT)=TRANS(KSLANT)+WWA*GI(ISLANT)
TRAN(JSLANT)=TRANS(KSLANT)
JSLANT=JUSLANT+KADD

GO TO 202

KSLANT=K

DO 321 ISLANT=19+KSLA
TRANC{KSLANT)=TRANC{KSLANT)*GI(ISLANT)
KSLANT=KSLANT+KMAX

GO TO 202

KSLANT=K

DO 322 ISLANT = 1sXSLA

TRAN(CJSLANT) = TRAN(JSLANT) + TRANC(KSLANT)*GI{(ISLANT)

KSLANT=KSLANT +KMAX
JSLANT = JSLANT+KADD
CONTINUE

RETURN

END

il



211

202
201
200

SUBROUTINE CENTRE(WT)

COMMON AKNUsSALFAsANUsANUZ sBETAsCNRsCO2PI2+G9sGAMAIPZsPZA9»SECSN»
1SQTAISRZySRZAISSLeSTsTRANs TRANCs TRANSsWAITsWWA» I1 9 ISTesJMAX9KADDS
2KMAXsKSLAsMsKMESS»KSTOP

DIMENSION AKNU{12601)sANU(225)sALFA(35)+BETA(35)sCNR(35)+G(36)»
1GAMA(35)+PZ(35) SEC(6)355L(69225)9sSN(150)9sSRZ(36)+ST(7875)
2 TRANC(210) s TRANS(210) sWAIT(36)515T(225)»PZA(35)sSRZAL(3
35)9SQTA(35) »TRAN(10+210)

DIMENSION WT(40)

DO 200 J =1sJMAX

EXPIT = 0.

ISUB = IST(J)

DO 201 K = 19KMAX

IF (EXPIT+9.25) 20092005211

1SUB = ISUB+1

EXPIT = EXPIT~AKNU(ISUB)*WT(K)

KSUB = K

DO 202 ISLANT = 1sKSLA

TRANC(KSUB)}=TRANC (KSUBI+WAITIJ)*EXPF(EXPIT*SEC(ISLANT))

KSUB = KSUB+KMAX

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE KNUMIX(XINsYINsOUTsI1)
DIMENSION A(42)9sHH(10)sXX(10)
DIMENSION RA(32)sCA(32)9RB(32)sCB(32)9sB(44)sAK(5)sAM(5)sDY(4)
GO TO (400+401)s11
400 READ INPUT TAPE 59710 (HH(I)9I=1910)s(XX(I)sI=1910)s(A(1)sI=1942)
RETURN
710 FORMAT (5E1448/5E14e¢8/5F14e8/5F1448/(5E1448))
401 X=XIN
Y = YIN
X2 = X¥*X
Y2 = Y®Y
IF (X-10es) 20052015201
200 IF (Y=le) 20252024203

203 RA(l) = 0.
CA(1l) = O
RB(l) = 1,
CB(1) = O,
RA(2) = X
CA(2)y = Y
RB(2) = «5=-X2+Y2
CB(2) = =24%X%Y
CBl = CB(2)
Uv1l=0e

DO 250 J=2,31
JMINUS = J=-1
JPLUS = J+1
FLOATJ = JUMINUS
RB1 = 2¢*%FLOATJ+RB(2)
RA1 = —FLOATJU®(2+#FLOATJ-1e)/2¢
RA(JUPLUS)=RB1*RA(J)-CB1I*CA(J)+RALI*RA{IMINUS)
CA(JPLUS)=RB1*#CA(J)+CBL1®#RA(J)I+RALI*CA(IMINUS)
RBIJPLUS)=RB1¥RB(J)~CB1*CB(J)+RA1I*RB(JIMINUS)
CB(JPLUS)=RB1*CB(J)+CB1*RB(J)+RA1*CB(JIMINUS)
UVE(CA(JPLUS)*RB(JPLUS)~RA(JPLUS)I*CB(JPLUS) )/ (RB(JPLUS)I*RB(JPLUS)+
1CB(JPLUS)*CB(JPLUS))
IF (ABSF(UV-UV1)-14E-6) 25192509250
250 UvVli=uv
251 OUT = UV/1.772454
RETURN
202 IF (X-2e¢) 30193019302
301 AINT = 1.
MAX = 12e¢+5e%X2
KMAX = MAX-1
DO 303 K=0sKMAX
AJ = MAX~K
303 AINT = AINTH(=24%#X2)/(2e%AJ+1e)+1e
U = —2+%¥X®AINT
GO TO 304
302 IF (X-4¢5) 30593069306
305 B(43)=0,
Bl&44) = 0.
J = 42
DO 307 K = 1442
B(J) = o4%XR®B(J+1)-B(J+2)+A(J)
307 J = J-1
U= B(3)=-B(1l)
GO TO 304
306 AINT = 1.0
MAX = 244+404¢/X
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308

304

311
310

312

318

314

313

315
317
320
201

330

AMAX = MAX

DO 308 K=1sMAX

AINT = AINT#(2,%AMAX~—1e)/(2%X2)+10
AMAX = AMAX =1,

U = ~AINT/X

V=1eT72454%EXPF(-X2)

H = «02

JM = Y/H

IF (JUM) 310,311,310
H=Y

2 = 0o

L =20

DY(1) = Oe
DY(2) = H/2.
DY(3) = DY(2)
DY(4) = H
AK(1l) = O
AM(1) = O,

DO 313 J=194

YY = Z+DY(J)

UU = U+eS%AK(J)

VV = V+e5#AMI(J)

AK(J+1) = 2% (YYRUU+HXRVV) ¥H
AMIJ+1) = =2,%(14+X*UU-YY*VV)*H
IF (J=3) 31393149313
AK(4)=2e%AK(4)

AM({4) = AM(4)+AM(4)

CONTINUE

2=Z+H

L = L+1

U = U+e166666TH(AK(2)+2e*AK(3)+AK(4)I+AK(5))
V = V+e1l66666TH(AM{2)+AM(3)+AM(3)+AM(4)+AM(5))
IF(JUM) 31543204315

1F (L=JUM) 31843179320

AJM = UM

H = Y-=AJM¥*H

GO TO 312

QUT = V/1a772454

RETURN

F1 = 0o

DO 330 J=1,10

F1=F14HH{J) ZLY2+ (X=XX{J) ) ¥(X=XX(J)II+HH{D) 7 Y2+ (X+XX(J) 1 *(X+XX(J))

1)

OQUT = Y*F1/3.1415927
RETURN

END

29



60

SDATA

«46224367TE 0 +28667551E O

022833864E-3 +7B025565E~5 «10860694E~6
024534071 ¢ 73747373 12340762
207888061 343478546 36944764

«00000000E O ¢19999999E O
¢15583999E O©
+00000000E 0-0458514124E~1

-0.20849765E~-1 +00000000E-C
«00Q00000E O +26487634E-2
+48995199E-3 +00000000E 0-0.19336308E-3
«00000000ED0=-025655512E~4 «00000000E O

~0e427876379E-5 +00000000E O +85668736E-6

«00000000E O +70936022E-7

«+00000000E ©
¢11196011E~1

«10901721E ©

+«00000000E 0-0418400000E O
¢00000000E 0-0012166400E ©

+00000000E O-

¢24810521E-1 «326437733E-2

043993410E-9 «22939360E-~12
17385377 2254974
446036824 53874809

+00000000E ©
¢36215730E~1

«00000000E ©
«87708159E~1
«00000000E ©

+00000000E 0-0456231896E~-2

0411732670E-2
«00000000E ©
«86620736E~5

«00000000E 0
«72287745E~4
+00000000E 0

«00000000E00~0425184337E~6

34 6 «0314 86113631 433998104
03478548451 46521451549 ¢6521451549 3478548451
24534071 «73747373 1¢2340762 17385377 20254974
2.7888061 33478546 3944764 46036824 543874809

«10901721E 0
¢10860694E=6

¢28667551E ©
¢ 78025565E-5
e000 4001 4002 4003 005 010 «040
¢001 +001 <001 4002 «005 030 060
0 1.0000000 15 1640352762 30 11547005 45
75 38637033
0000400 27047
0000e30 27047
2000460 27067
0001400 27067
0001430 267410
0001460 26246
0002400 25749
000250 25342
0003400 2494
0004,00 243.6
0005600 23942
0006450 2341
0008400 23041
0010400 22767
0013.00 22640
0016400 22446
0020.00 223,1
0025400 22167
0030400 22045
0040400 21846
0050400 21742
0065400 21647
0080400 21647
0100400 21647
0130400 21647
0160600 21647
0200400 21607
0250600 22047
0300.00 22845
0400400 24145
0500400 25149
0650600 2648
0800400 27545
1000,00 28745
1013425 2882

e46224367E O
¢22833864E-3

«24810521E~1

¢32437733E~2

e43993410E-9 +22939360E-12

«100 +500 1.000
«400 500
14142136 60 240000000

ik



APPENDIX B

TRANSMISSIVITIES AVERAGED OVER 5.0 cm™! INTERVALS BETWEEN 502.0 AND 857.0 em™t
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€9

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS,

ZENITH ANGLE =

5C2.0

1.C0G2
1.C003
1.C000
1.0503
1.€205

1.0000
1.C00¢
1.Co0n
1.00023
1.0C89D

1.0000
1.0300
1.C003
1.800C
1.C000

1.000¢
1 -C‘JOC‘
1.2303
1.0030¢0
l1.c00n

«9399
«9999
9799
5998
«9997

.9995
<9992
.9988
.9979
.9968

«9945
.9918
9872
9869

503.0

1.3CC0
1.2¢0e
1.0CC0
1.0C%0
1.0C00

1.002C
1.0C03
1.00u0
1.703C
1.2020

1.0020
« 2000
1.80G32
l.000C
1.0C00

1.0000
l. 'JO‘:‘:
1.G0C0
1.0230
1.6GC352

«9999
«9999
«3999
«99938
« 9997

.9995
«7992
.9988
.9979
«9967

+« 9945
.9917
9870
«9867

> DEGREES

504.0

1.00C9
1.000¢C
1.00Cn
1.0929
1.06C0D

1.007%0
1.0022
1.0000
1.0070
1.000¢

1.000%
1.€C000
1.0000
1.0030
1.0009

1.60300
1.0302
1.CCO0
1.007¢
1.0Q020

9699
« 9939
<9599
<9978
« 9997

+9995
9892
.9988
«9979
<9957

9944
«9916
. 9869
.9865

505.0

1.3€00
1.2G00
1.CCJ30
1.62%0
1.5000

1.00C0
1.C0G0
1.0000
1.UG0OU
1.CCCO

1.56000
1.0000
1.0G00
1.00%0v
1.0C00

1.C000
1.5009
1.00N0
1.0020
1.C03¢

«9999
. 9999
«9999
«9998
« 9997

<9995
<9991
.9988
.9978
.9966

«3943
9915
«9867
«9863

506.C

1.9C00
1.9002
1.0000
1.920¢
1.00040

1.0C0J
1.0205
1.330u
1.030C0
1.C0C7

1.0030
1.3CC0
1.C002
1.2000
1.000C

1.3C00
1.0000
1.0C00
1.0200

1.2CCC

« 9999
« 9999
« 9999
« 999